Situation
Okra is a traditional vegetable crop in Miami-Dade County grown annually on 1000 to 1500 acres, and sold nationwide for the fresh market. Yields range from less than 600 bushels/acre to more than 1000 bushels/acre.

Varieties
Refer to the Vegetable Production Guide for Florida (SP170) for variety selection. Clemson Spineless 80 is the major variety currently grown in the Miami-Dade County.

Soils, Land Preparation, and Planting
Okra in Miami-Dade County is grown both on gravelly and marl soils. Okra is seeded directly into the soil. Plant spacings are 1.5–4 inches between plants and 36 inches between rows. Often growers plant okra following a winter vegetable crop, so that the fruits are harvested from early spring to late fall.

Fertilizer
Calibrated soil tests for the calcareous soils of Miami-Dade County are not available at present. Therefore, tissue analysis is recommended to determine the composition and rates of fertilizers to be applied. Instructions for tissue sample collection, preparation and submission are provided in Plant Tissue Information Sheet (SL-131), which is available from your local UF/IFAS Extension office. Information on plant tissue analysis for okra is provided in the Vegetable Production Guide for Florida (SP170). The total amount of fertilizer required in Miami-Dade County depends on the variety, soil fertility, and other environmental factors. It may be possible to use less inorganic fertilizer if a cover crop has been grown or if a soil organic amendment (compost, biosolids, manure) has been applied. Preplanting fertilizer formulas of 6–6–6, 6–3–6, 10–10–10, or similar formulas are satisfactory. For okra on flat ground all of the P and 20–30% N and K should be broadcast and incorporated prior to planting. The remainder of the fertilizer should be side-dressed in 2 or 3 applications beginning at 3–4 weeks after planting. Okra is often planted as a second crop on plastic mulch. In this case the fertilizer is provided by fertigation once or twice per week with daily rates ranging from 0.5 lb N to 2 lb N/acre. Magnesium nitrate or sulfate and EDDHA-chelated iron should be applied if deficiency symptoms appear.

Irrigation and Freeze Protection
A water cannon (“big gun”) or pivot system can be used to irrigate okra on flat fields. Drip irrigation systems are used for okra on plastic mulch. One drip irrigation tubing per bed has proven to provide adequate amounts of water for the plants.
Okra sustains frost injury when temperatures drop 3°F below freezing. Few growers grow okra in the middle of winter.

Insect Management
Refer to the *Vegetable Production Guide for Florida* (SP170) for extensive information on insect control. The major pest of okra is the melon thrips, which scars the fruit, and aphids. Although the silverleaf whitefly develops prolifically on okra, the plant compensates for the feeding damage. The main concern is that tremendous numbers of this pest migrate from okra fields to other crops, such as tomato, bean, and ornamental crops.

Disease Management
Refer to the *Vegetable Production Guide for Florida* (SP170).

Weed Management
Refer to the *Vegetable Production Guide for Florida* (SP170).

Harvest
The harvest season extends from March through November. Okra is picked by hand and sold for local consumption, but primarily for shipment to other states.

Multiple Cropping/Rotation
Okra can be mowed after several harvests. The mowed plants will produce new growth with good yield. In practice such ratooning is repeated two or three times. Okra can be grown as a second crop after tomatoes, squash, beans, and cucumbers.