Development of fertilization programs for Florida field or forage crops requires knowledge of nutrient requirements for each crop (which has usually come from years of research on the crop), soil nutrient levels, reactions of the soil with added nutrients, and the ability of the soil to retain and deliver nutrients and water. These factors determine rates, placement, and timing of fertilizer applications.

Suggested fertilization rates are based on soil tests currently used by the University of Florida Soil Testing Laboratory at Gainesville and are presented in SL-129 UF/IFAS Standardized Fertilization Recommendations for Agronomic Crops (http://edis.ifas.ufl.edu/ss163). Suggested fertilization rates are based on broadcast application, while lower rates would be suitable in a band application in or near the row.

A soil sample must be representative of the area to be fertilized. Take samples to a depth of 6” to 8”, except when sampling to determine the need for gypsum on peanuts; in this case, samples should be taken to a depth of 3” from the potential pegging zone of the plant.

If fertilization recommendations are made without the aid of soil test results, the following guidelines should be used:

1. Nitrogen rates are the same as recommended in IFAS publication SL-129.

2. Phosphorus rates are influenced by soil texture. For sand or light loamy sand soils, use the rates listed under “medium” soil test. For heavy loamy sand, heavy loam, or organic soils, use the rates listed under “low” soil test.

3. Use the potassium rates listed under “low” soil test.

4. All appropriate comments in SL-129 or UF/IFAS Extension soil test reports should be considered.

Soil Nutrient Recommendations

Nitrogen

Recommendations for N fertilization are not based on soil tests. The complex nature of soil N precludes the use of rapid, inexpensive, and reliable tests to measure this element. Fertilizer N is not normally needed for field crops grown on organic soils. Nitrogen can be leached from sandy soils by heavy rainfall. If this occurs, it is desirable to apply more N as an adjustment to leaching or to use smaller but more frequent applications in an attempt to minimize leaching losses.

Phosphorus

Many fields used for agronomic crops have received annual applications of P-containing fertilizers for many years. As a result, the P levels of these soils are high or very high as measured by a soil test. Since crop responses to even more P is unlikely, this element may not be needed until
soil tests indicate that the soil levels have declined to the medium category. Phosphorus recommendations are given in SL-129.

Potassium
Potassium can be leached below the root zone of agronomic crops grown on sandy soils if excessive rainfall occurs. This may be especially true for annual crops. If so, it would be desirable to replace the leached nutrient or to make smaller but more frequent applications. Do not apply K-containing fertilizer to emerged peanuts, as high levels in the soil can interfere with the uptake of calcium by the peanut pods.

Magnesium
If the magnesium soil test is below the target level and dolomitic limestone was not applied, soluble Mg should be included in the basic application of fertilizer for most field crops. Application of at least 10 lb/A of Mg is recommended. Since lime is seldom used for flue-cured tobacco, the fertilizer for this crop should contain at least 20 lb/A Mg.

Sulfur
Indications are that at least 20 lb/A of S should be applied annually in the fertilizers for field crop production. Due to low emissions from industrial establishments, very little sulfur is added to Florida soils in rain water. Also, high-analysis fertilizers usually contain little or no sulfur. Fertilizer materials that contain relatively high percentages of sulfur include ammonium sulfate, ordinary superphosphate, sulfate of potash, sulfate of potash-magnesia, agricultural gypsum, and magnesium sulfate.

Calcium
If the soil pH is appropriate for the field crop in question, there will be sufficient Ca for proper plant nutrition. Peanuts are an exception since they require relatively high levels of Ca in the pegging zone for proper kernel development and subsequent germination if grown for seed purposes.

Micronutrients
Iron (Fe), copper (Cu), manganese (Mn), zinc (Zn), boron (B), and molybdenum (Mo) are the essential micronutrients. Deficiencies of one or more of the micronutrients have been noted on some crops in all sections of Florida. Perennial grasses and clovers on certain mineral soils in central and south Florida, and all field crops on organic soils in the same area, have responded to applications of Fe, Cu, Mn, Zn, and B. Small grains and peanuts on phosphatic soils in central and north Florida have responded to applications of Cu. Zn has controlled “white bud” of corn. Peanut “hollow heart” has been prevented by applications of B. Chlorosis of perennial grasses, generally on new growth in the spring on soils with a high pH or on light gray sands in central and south Florida has been overcome by applications of Fe. As a seed treatment, Mo has improved the nodulation of soybeans grown on non-limed or inadequately limed soils. Yellowing of peanuts has been prevented by Mn applications, and bermudagrass often responds to Mn on sandy soils. There are numerous other instances where one or more of the micronutrients have limited crop production.

Soil tests for micronutrients are available and should be used where micronutrient deficiencies are expected. Fertilization studies with micronutrients have not always been conclusive because many factors affect the response of plants to these elements. Therefore, local experience should serve as the primary guide as to the need for these nutrients. Micronutrient deficiencies are most likely to occur on organic soils, soils with pH >6.0, and flatwood soils.

For new plantings of forages on virgin flatwood soils, 3 lb/A of copper should be applied with the initial fertilization.

In instances where deficiencies are probable, micronutrient applications serve as insurance against reduced yields. Some growers of peanuts and other high-value crops make routine applications of B and other micronutrients, especially when the soil pH is 6.0 or above or when planted after long-term pasture where B fertilization may not have been used. Soybean and some other legumes grown on soils with pH >6.0 often show Mn or other deficiency symptoms, which can be corrected with periodic applications of micronutrients. Corn has shown Mn deficiency symptoms at early growth stages that tend to disappear as the root system develops. However, corn responds to banded applications of micronutrients at plant, and this results in higher yields than later applications if the micronutrient is limited.

Cu, Zn, Mn, and Fe may be supplied as oxides or sulfates. B is usually applied as borax or other borates, but liquid boric acid is a good source for B too. Plants respond equally well to all of these sources, but oxides are usually more economical to use than sulfates. Since there is a very small difference between sufficient and toxic amounts of B, care must be exercised when applying this micronutrient. Recommended amounts should not be exceeded.

When forages are grazed there is recycling of nutrients within the soil-plant-animal system. Livestock mineral
mixtures containing micronutrients make small but impor
- tant contributions of these elements to the soil. Harvest of
hay or silage removes these elements from the soil.

Under grazing conditions, the metallic micronutrients
(Fe, Cu, Mn, and Zn) should be applied once every 5 to 10
years unless deficiencies are confirmed by soil and/or plant
analyses. B should be applied to legume pastures every 3 to
4 years. Where forage is removed as silage or hay it may be
necessary to shorten this interval.

Application of Micronutrients

Micronutrients may be applied to the soil or to the grow-
ing plant. Mo may also be applied as a seed treatment at
planting. Soil applications usually involve mixing and then
applying the micronutrients with fertilizers or pesticides.
Since small amounts of micronutrients are used, the
mixtures can be applied more uniformly and economically
than in a separate operation. Foliar applications may be
made in sprays or dusts. Compatibility must be known
before mixing elements with foliar-applied pesticides.
Soluble micronutrients can also be applied as a tank mix
with herbicides that will be incorporated with soil. Avail-
ability and characteristics of materials and equipment and
the crop conditions determine the most suitable method of
application.

Legume Seed Treatment

Mo may be added to soybean and other legume seed to be
planted on mineral soils that have not been limed to a pH
of 6.0. Most seed are treated by commercial applicators with
standard packages including fungicides, insecticides, and
other desired amendments.

Soil Applications

Solubility of Mn, Zn, Cu, and Fe decreases rapidly as pH
increases above 6.0. This has important consequences.
A deficiency of one of these nutrients is often caused or
aggravated by an elevated soil pH. Thus over liming can
provoke micronutrient deficiencies. Also, when soluble
forms of Mn, Zn, Cu, or Fe are applied to deficient soil, the
nutrients are rapidly changed to insoluble forms. This effect
is much worse when micronutrients are broadcast than
when they are banded. The best method of soil application
of these nutrients is in a band together with elemental S.
The resulting low pH in the band will keep the nutrients
soluble throughout the growing season. Borax to supply B
and sulfates of Cu, Mn, and Zn are common soluble sources
of micronutrients that may be mixed with fertilizer for
soil applications. Care must be taken not to apply excess
amounts of the materials or toxicities may result.

Micronutrient Mixtures

There has been a tendency in the past to recommend
commercially available mixes of micronutrients. These
were used in a “shotgun” approach to fertilization—throw
a bit of all the micronutrients at the plant, and if one of
the elements is limiting yield your application will do
some good. This approach should be discouraged for
the following three reasons: (1) it is an added cost with
questionable returns; (2) repeated additions could result in
build up to toxic levels of some metals; (3) if a deficiency of
a particular micronutrient does exist, the quantity applied
in the mix will probably not be sufficient to completely
correct the problem and may mask a serious deficiency.
Producers should watch for signs of deficiency, determine
which nutrient is needed (by responses to single-element
applications), and subsequently apply the needed element.
However, many homogenized fertilizers have a micronutri-
ten package that will meet the requirements for most
plants unless soil levels are very low. Low amounts of these
nutrients can be spread uniformly if each pellet of fertilizer
has a uniform amount of micronutrients mixed in.

Foliar Applications

Foliar applications of micronutrients will normally result
in a rapid response if a deficiency exists. Also, a response
can be obtained with less material than in soil applica-
tions. However, there is a danger of burning the foliage
if excessive rates are applied. Only meager information
is available on the tolerance of agronomic plants to foliar
sprays. Species, age, and condition of the plants will greatly
affect tolerance to nutrient sprays. Since there is often more
foliage burning with mixtures of certain pesticides and
nutrient sprays, they should be applied separately. If there is
a synergistic effect, they should be applied together because
they are more effective together. In general, fine mists that
do not result in runoff will cause less damage to leaf tips
and margins than will coarse sprays.

Rates of Cu, Fe, Mn, or Zn sulfates that should be effective
and safe for agronomic crop plants are about 1 lb of mate-
rial in water sufficient to cover one acre. Borax and other
soluble forms of B should be used at this same rate. If more
than one nutrient is applied, do not exceed a total of 2 lb/A
of salts. Follow label directions if commercial mixtures of
micronutrients are used.

Chelates are generally more effective on firm and thick
leaves of trees than on the soft and succulent foliage of
herbaceous plants. Other sources of micronutrients are available for foliar application and may be satisfactory.

Timing and Placement of Fertilizer

Mixing seed with fertilizer and broadcasting both in the same operation has given fair to good stands of ryegrass, small grains (rye, oats, and wheat), pearl millet, sorghum-sudangrass, bahiagrass, and other crops. Legume seed should not be mixed with fertilizers since the inoculant can be killed or its effectiveness greatly reduced by these materials. However, if this method is used, spread the mixture as quickly as possible since setting up overnight can decrease germination and kill more bacteria.

Seed distribution when mixed with fertilizer has been a problem in many cases. Conventional seeding methods, drilling or broadcasting on a well-prepared seedbed, are preferred, since seed can be more uniformly distributed. Broadcasting operations should be followed with a light disk and/or cultipacker.