Glove Selection for Working with Pesticides

Frederick M. Fishel

This document explains how to select gloves suitable for handling pesticides. A chemical-resistance chart for various approved materials is presented, and examples of the types of available gloves are displayed.

Introduction

Pesticides can enter the body in four main ways: by mouth, by inhalation, or by contact with the skin or eyes. In most pesticide handling situations, the skin is the part of the body most likely to receive exposure. About 97% of human exposure to pesticides during application of liquid sprays occurs through contact with the skin. To prevent exposure, pesticide applicators should wear protective clothing and personal protective equipment (PPE). For general information on PPE, refer to EDIS Document PI-28 Personal Protective Equipment for Handling Pesticides http://edis.ifas.ufl.edu/pi061. The use of gloves while handling pesticides can go a long way in reducing dermal exposure.

Specific Information

Every pesticide product label contains specific information about necessary clothing and equipment to be worn while mixing, loading, and applying that product. The information may be found in the “Precautionary Statements” section of the label (Figure 1). Remember, the label is the law. Read it and wear the appropriate equipment. More detailed information about chemical and physical hazards associated with a specific pesticide may be found by reading the products Safety Data Sheet (SDS). The SDS is available from the pesticide dealer. For guidance in understanding the SDS, refer to EDIS Document PI-35, Understanding Safety Data Sheet Language http://edis.ifas.ufl.edu/pi072.

Figure 1. PPE information is located in the Precautionary Statements section.

Pesticide labels frequently specify use of either waterproof or chemical-resistant gloves. Keep in mind that waterproof materials are not necessarily chemical-resistant. Gloves used for handling pesticides should be unlined and not made of cotton, leather, canvas, or other absorbent materials.

Polymers used for chemical-resistant gloves include barrier laminate (Figure 2), butyl rubber (Figure 3), nitrile rubber (Figure 4), neoprene rubber (Figure 5), natural rubber (Figure 6), polyethylene plastics, polyvinyl chloride (Figure 7), and Viton®. These materials are used either individually

2. Frederick M. Fishel, professor, Agronomy Department, and director, Pesticide Information Office; UF/IFAS Extension, Gainesville, FL 32611.

The use of trade names in this publication is solely for the purpose of providing specific information. UF/IFAS does not guarantee or warranty the products named, and references to them in this publication does not signify our approval to the exclusion of other products of suitable composition. Use pesticides safely. Read and follow directions on the manufacturer’s label.

The Institute of Food and Agricultural Sciences (IFAS) is an Equal Opportunity Institution authorized to provide research, educational information and other services only to individuals and institutions that function with non-discrimination with respect to race, creed, color, religion, age, disability, sex, sexual orientation, marital status, national origin, political opinions or affiliations. For more information on obtaining other UF/IFAS Extension publications, contact your county’s UF/IFAS Extension office.

U.S. Department of Agriculture, UF/IFAS Extension Service, University of Florida, IFAS, Florida A & M University Cooperative Extension Program, and Boards of County Commissioners Cooperating. Nick T. Place, dean for UF/IFAS Extension.
or in various combinations in commercially available gloves.

Refer to Table 1 when the PPE section of the pesticide label specifies chemical-resistance categories A through H (Figure 8). The table refers you to several PPE materials from which to choose for each category. It also tells how long you can expect the material to be resistant to the pesticide you are using. For example, the label may state: “If you want more options, follow the instructions for category C on an EPA chemical resistance category selection chart.” This means gloves made of either barrier laminate, butyl rubber, nitrile rubber, neoprene rubber, polyvinyl chloride, or Viton® would be the better choice compared to natural rubber or polyethylene. Since those 6 materials are rated as “High” in their level of chemical resistance, they would be expected to maintain their integrity for the entire day while working with that product.

Glove Construction

Chemical-resistant gloves are fabricated in two forms. One is that of the hand silhouette. This glove is made by die cutting a two-dimensional outline of a hand from a plastic film. Two of these flat hand forms are welded around the edges to form a glove. Most gloves made from polyethylene are constructed in this manner. The hand silhouette gloves may be undesirable because of poor fit, loss of dexterity, and difficult in keeping the gloves on the hand. The second and more common type of chemical-resistant glove is
made by dip molding, that is, by dipping a hand mold into a polymer-containing liquid. Dipped gloves are right- and left-handed and are sized. These gloves provide both a better fit and improved dexterity. Some of the dipped gloves come with curved fingers, which provide additional comfort.

Glove Liners
Separable glove liners are separate glove-like hand coverings, made of lightweight material, with or without fingers. Work gloves made from lightweight cotton on poly-type material are considered to be glove liners, if worn beneath chemical-resistant gloves. Unless the pesticide product labeling specifically prohibits their use, separable glove liners may be worn beneath chemical-resistant gloves, provided the liners do not extend outside the chemical-resistant gloves that are worn over them. If glove liners are used in applying pesticides that are under the jurisdiction of the Worker Protection Standard, once they are used for handling or early entry activities, the liners must be discarded immediately, after a total of 10 hours of use, or within 24 hours of first use, whichever occurs first. The liners must be replaced immediately if they come into direct contact with pesticides.

Additional Information

Glove Selection for Working with Pesticides
Table 1. EPA chemical resistance categories.

<table>
<thead>
<tr>
<th>Category</th>
<th>Barrier laminate</th>
<th>Butyl rubber ≥14 mils</th>
<th>Nitrile rubber ≥14 mils</th>
<th>Neoprene rubber ≥14 mils</th>
<th>Natural rubber ≥14 mils</th>
<th>Polyethylene</th>
<th>Polyvinyl chloride ≥14 mils</th>
<th>Viton® ≥14 mils</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>High</td>
<td>High</td>
<td>High</td>
<td>High</td>
<td>High</td>
<td>High</td>
<td>High</td>
<td>High</td>
</tr>
<tr>
<td>B</td>
<td>High</td>
<td>High</td>
<td>Slight</td>
<td>Slight</td>
<td>None</td>
<td>Slight</td>
<td>Slight</td>
<td>Slight</td>
</tr>
<tr>
<td>C</td>
<td>High</td>
<td>High</td>
<td>High</td>
<td>Moderate</td>
<td>Moderate</td>
<td>High</td>
<td>High</td>
<td>High</td>
</tr>
<tr>
<td>D</td>
<td>High</td>
<td>High</td>
<td>Moderate</td>
<td>Moderate</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>Slight</td>
</tr>
<tr>
<td>E</td>
<td>High</td>
<td>Slight</td>
<td>High</td>
<td>Slight</td>
<td>None</td>
<td>Moderate</td>
<td>High</td>
<td>High</td>
</tr>
<tr>
<td>F</td>
<td>High</td>
<td>High</td>
<td>High</td>
<td>Moderate</td>
<td>None</td>
<td>None</td>
<td>Slight</td>
<td>High</td>
</tr>
<tr>
<td>G</td>
<td>High</td>
<td>Slight</td>
<td>Slight</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>High</td>
</tr>
<tr>
<td>H</td>
<td>High</td>
<td>Slight</td>
<td>Slight</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>High</td>
</tr>
</tbody>
</table>

High: Highly chemical-resistant. Clean or replace PPE at end of each days work period. Rinse off pesticides at rest breaks.
Moderate: Moderately chemical-resistant. Clean or replace PPE within an hour or two of contact.
Slight: Slightly chemical-resistant. Clean or replace PPE within 10 minutes of contact.
None: Not chemical-resistant. Do not wear this type of material as PPE when contact is possible.