Introduction
Sugarcane (a complex hybrid of *Saccharum* spp.) is harvested during a five-month period (October to March) in south Florida. “Early maturing” cultivars milled in October or November may not have reached their peak sucrose content, but may have higher sugar per ton (SPT, lb sucrose per ton of sugarcane biomass) than other cultivars at the onset of milling operations (Miller and James 1977). Under current industry milling capacities, harvesting the 396,000 acres of Florida sugarcane (VanWeelden et al. 2017) takes roughly five months. Unavoidably, sugarcane plants harvested during the early harvest period have not yet achieved maximum sugar content. Consequently, sugar content for any given cultivar will change over the course of the harvest season, which can impact the profitability of the harvest. Maturity curves of SPT vs. time have been developed for sugarcane cultivars in South Africa (Bond 1982), Louisiana (Legendre and Fanguy 1975; Legendre 1985; Richard et al. 1981), and Mauritius (Mamet and Galwey 1999). Although it is known that sucrose accumulation rates vary between varieties, maturity curves for “CP” sugarcane cultivars (those developed at the USDA-ARS Sugarcane Field Station in Canal Point, Florida, in collaboration with University of Florida and Florida Sugar Cane League) have not been reported since 1977 (Rice 1974; Miller and James 1977). CP cultivars occupy > 85% of Florida sugarcane acreage (VanWeelden et al. 2017) and are also economically important (Tew 2003) in many countries, including Argentina (25% of total acreage), Belize (16%), El Salvador (50%), Guatemala (65%), Honduras (47%), Mexico (15%), Morocco (54%), Nicaragua (75%), Senegal (9%), and Venezuela (9%). Since most sugarcane growers in Florida plant a diverse selection of cultivars, these maturity curves are needed as tools to help growers make informed choices regarding harvest scheduling decisions.

This fact sheet presents the sucrose accumulation maturity curves for different crop ages (plant cane, first ratoon, and second ratoon) of CP 80-1827. CP 80-1827 harvest samples were collected at two-week intervals at five locations over four harvest seasons in the Everglades Agricultural Area (EAA). Biomass and sugar yields were determined on all samples in order to generate SPT trends over time. A full comparison of CP 80-1827 SPT trends with 12 other CP cultivars may be found in EDIS publication SC069, *Maturity Curves and Harvest Schedule Recommendations for CP Sugarcane Varieties* http://edis.ifas.ufl.edu/sc069.
Cultivar Description

CP 80-1827 flowers in early December and has a large stalk diameter and an erect growth habit. This clone is a good source of mechanically cut seed cane but has low sucrose content relative to current major cultivars.

Maturity Curves

Figure 1 presents the sugar per ton (SPT, lbs sugar/ton sugarcane biomass) for CP 80-1827 from mid-October to mid-March. Separate curves are presented for plant cane, first ratoon, second ratoon, and the entire data set.

Research has shown that older ratoon crops generally have higher SPT values but lower tonnage (Glaz et al. 1989; MacColl 1976). Thus, growers should generally expect the SPT of their sugarcane crop to increase with crop age (Figure 1). The mean SPT of CP 80-1827 increased from 246 lbs/ton in plant cane to 261 lb/ton in first ratoon and 265 lb/ton in second ratoon. The overall mean across crop ages ranked seventh out of 13 CP cultivars.

Grower recommendations are based on the entire data set across all crop ages. Early-season predicted SPT for CP 80-1827 at the onset of harvest on Oct. 14 was 209 lb/ton (ranked fourth out of 13 cultivars), and maximum predicted SPT was 279 lbs/ton on Feb. 21 (ranked seventh out of 13 cultivars). In comparison to other CP cultivars, CP 80-1827 matures slowly and should be harvested during the last 50 days of the harvest season (see http://edis.ifas.ufl.edu/sc069).

References

