Situation
Tomatoes are an important traditional vegetable crop in Miami-Dade County with acreages varying between 3,650 and 13,403 acres during 1980–1996. Yields range from less than 1200 25-pound cartons/acre to more than 2,000 cartons/acre. The production cost in 1999–2000 was approximately $8.22 per carton or $11,507/acre for an acceptable yield of 1,400 cartons/acre. Tomatoes produced in Miami-Dade County are sold nationwide for the fresh market during the winter and spring.

Tomato Varieties
Refer to the Vegetable Production Guide for Florida (SP170) for variety selection. Currently the major varieties grown in Miami-Dade County are as follows:

Sanibel: a late-midseason, determinate, jointless hybrid. Fruit are deep oblate with a green shoulder. Disease tolerant or resistant to: Verticillium wilt (race 1), Fusarium wilt (races 1 and 2), Alternaria stem canker, root-knot nematodes and gray leaf spot.

Florida 47: a mid- to late-season, determinate, jointed hybrid. Fruit are deep globe shaped and uniform green. Resistant to: Verticillium wilt (race 1), Fusarium wilt (races 1 and 2), Alternaria stem canker, and gray leaf spot.

Minor large-fruited varieties include: Agriset 761, Solar Set, Solimar.

Plum types: Spectrum 882, BHN 410, BHN 411,BHN 404, Plum Dandy, Puebla

Cherry types: Cherry Grande, and Super Sweet 100

Grape types: Santa Claus, Tropical Ruby

Soils, Land Preparation, and Transplanting
Tomatoes in Miami-Dade County are grown mainly on gravelly soils (Krome or Chekika soil series). Most gravelly soils are rock-plowed on a regular basis, a process that creates 6-12 inches soil depth above consolidated bedrock. The optimization of fertilizer and irrigation management for these gravelly soils is essential to obtain high yields. Sandy soils (west Kendall area) are also suitable for tomatoes. At the present time, tomatoes are not grown on marl soils. However prior to the 1950s, tomatoes were only grown on marl soils. Most marl soils are at low elevations, and are prone to frequent flooding.

Typically tomato beds are 36–40 inches wide, and 6–8 inches high with 6 ft between the centers of adjacent beds. Preplant fertilizer should be applied in two parallel bands, each about 9 inches from the center of the bed. Next
Fertilization should be initiated with a 4-0-8 or similar formula and the fertilizer should be applied to the beds prior to planting. Formulas of 6-6-12, 6-3-12, 10-10-10, or similar have been used. Somewhat less than one-half of the fertilizer formulas of compost, biosolids, manure has been applied. Preplanting incorporation into the soil, or if a soil organic amendment is applied if a cover crop has been grown and the residue has been destroyed by wind, irrigation, or cultivation. Less inorganic fertilizer should be used if Dade County depends on the variety, soil fertility, and other environmental factors. The total amount of fertilizer required in Miami-Dade County is provided in the Vegetable Production Guide for Florida (SP170). The total amount of fertilizer required in Miami-Dade County depends on the variety, soil fertility, and other environmental factors. Less inorganic fertilizer should be applied if a cover crop has been grown and the residue incorporated into the soil, or if a soil organic amendment (compost, biosolids, manure) has been applied. Preplanting fertilizer formulas of 6-6-12, 6-3-12, 10-10-10, or similar formulas are satisfactory. Somewhat less than one-half of the fertilizer should be applied to the beds prior to planting. Fertigation should be initiated with a 4-0-8 or similar formula 3–4 weeks after transplanting to provide the remaining fertilizer. The beds should be fertigated once or twice per week with daily rates ranging from 0.5 lb N to 2.5 lb N; and the rate adjusted upwards at 3–4 week intervals as the plant biomass increases. Magnesium nitrate or sulfate and EDDHA-chelated iron should be applied if deficiency symptoms appear.

Irrigation and Freeze Protection

Drip irrigation systems are used for tomato production in Miami-Dade County. Generally one drip irrigation tubing per bed provides adequate water for plants, although a second is beneficial especially while the plants’ root systems are small. Water requirements for young plants are very low. Irrigation frequencies of once or twice per week suffice for most plastic mulched young plants until 5 weeks after transplanting. A tensiometer installed at 6” depth can be used for irrigation scheduling. Mature plants require approximately 1500 to 3500 gal. per acre per day. Over irrigation should be avoided since it stresses plants and leaches fertilizer out of the root zone. Optimal plant growth and yields are achieved when the soil moisture is maintained at tensiometer readings between 10 to 15 cbars. The UF/IFAS Extension Miami-Dade County office provides relevant information and services regarding tensiometers.

Tomato sustains chilling injury when temperatures drop 2°F below freezing. Therefore growers in Miami-Dade County arrange for freeze protection of tomato from the beginning of December through February. A high volume sprinkler irrigation system which applies 0.25 inch depth of water per hour should be used.

Fertilizer

Calibrated soil tests for the calcareous soils of Miami-Dade County are not available at present. Therefore, tissue analysis is recommended to determine the composition and rates of fertilizers to be applied. Instructions for tissue sample collection, preparation and submission are provided in Plant Tissue Information Sheet (SL-131), which is available from the UF/IFAS Extension Miami-Dade County office. Information on plant tissue analysis for tomatoes is provided in the Vegetable Production Guide for Florida (SP170). The total amount of fertilizer required in Miami-Dade County depends on the variety, soil fertility, and other environmental factors. Less inorganic fertilizer should be applied if a cover crop has been grown and the residue incorporated into the soil, or if a soil organic amendment (compost, biosolids, manure) has been applied. Preplanting fertilizer formulas of 6-6-12, 6-3-12, 10-10-10, or similar formulas are satisfactory. Somewhat less than one-half of the fertilizer should be applied to the beds prior to planting. Fertigation should be initiated with a 4-0-8 or similar formula 3–4 weeks after transplanting to provide the remaining fertilizer. The beds should be fertigated once or twice per week with daily rates ranging from 0.5 lb N to 2.5 lb N; and the rate adjusted upwards at 3–4 week intervals as the plant biomass increases. Magnesium nitrate or sulfate and EDDHA-chelated iron should be applied if deficiency symptoms appear.

Insect Management

Refer to the Vegetable Production Guide for Florida (SP170) for extensive information on insect control. The silverleaf whitefly, *Bemisia argentifolii*, arrived in Florida about 1985. The feeding of this pest causes uneven ripening of tomato. In addition it is a highly efficient vector of gemini viruses. One of the latter, the devastating Tomato Yellow Leaf Curl Virus, appeared in Homestead in 1997. In order to prevent the transmission of this virus, growers are spending about $200 more per acre of tomato per year for insecticides—mostly for Admire®—than before the arrival of this virus. Good field sanitation is essential for the suppression of the silverleaf whitefly. Other major insects include leafminer, armyworm, tomato fruitworm, looper, and aphids.
Weed Management
Refer to the *Vegetable Production Guide for Florida* (SP170).

Disease Management
Refer to the *Vegetable Production Guide for Florida* (SP170).

Harvest
The harvest season extends from December to May. Most tomatoes are picked by hand as “mature greens” for market in the northeastern states. “Vine-ripe” tomatoes, those are to be shipped moderate distances or to local markets, are usually harvested by hand at the “breaker” stage or the “pink” stage.

Multiple Cropping/Rotation
After completion of the tomato harvest, squash, okra, cucumber, watermelon, cantaloupe, okra, and other specialty vegetables or herbs often are seeded or transplanted into the existing beds. Crop rotation is dependent on good field sanitation to suppress pathogens and insects.