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Introduction

This publication will provide examples of how Al can
potentially improve the forecasting of water resource
variables at both the field and regional levels. It is
primarily intended for Extension educators, environmental
and water resources consultants, farmers, researchers, and
students who want to know more about Al systems and
their applications in agriculture and the environment. By
exploiting the opportunities that Al brings, stakeholders
will gain insights into the advantages of smart technologies
for environmental monitoring (Campbell 2021).

Accurate forecasting of surface water discharge and
groundwater levels is essential for effective water resource
management, especially in regions like Florida, where
these resources are vital to the local ecosystem and
economy. Florida's unique hydrological characteristics,
including an extensive surface water network and the
productive Floridan Aquifer, present a complex yet crucial
area for hydrological studies.

The advent of artificial intelligence (AI) and machine
learning (ML), an emerging transformative technology, has
permeated every aspect of our lives, from computer vision
to healthcare and now the environment (Russell and
Norvig 2016; Botache and Guzman 2024). As highlighted
by McAfee and Brynjolfsson (2017) and Choi et al. (2023),
these technologies are redefining how to approach
problems, providing innovative, scalable, and efficient
solutions to complex challenges in diverse fields.

Nowadays, hydrological systems are becoming
increasingly complex, a consequence of the growing
interaction between nature and humans from the local
scale of river sections, lakes, reservoirs, and so forth, to the
global scale (Hannah et al. 2011). In addition, the climate
drives the hydroclimatic characteristics of an area,
affecting the availability of natural resources, soil health,
the functioning and services of ecosystems, and human
health (IPCC 2014). However, traditional approaches can
hardly handle this nonlinear behavior; moreover, the
analysis of hydrological systems at the large scale, even
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globally, requires dealing with large volumes of real-time
data. There is great demand for the development of models
to evaluate, predict, and optimize the performance of
complex hydrological systems whose behavior is
characterized by strong nonlinearity. Al could help to
understand the complex relationships between the Earth’s
climate, soil, and water processes. With its ability to learn
from databases, make predictions, and automate decision-
making processes, Al presents a compelling solution to the
multifaceted challenges of climate, soil, and water
resources management (Schmidhuber 2015). Therefore, it
is expected that Al could potentially improve the
forecasting of environmental parameters at the field and
regional levels, such as soil, water, and climate (Reichstein
etal. 2019).

In recent years, deep learning (DL) has shown great
potential for processing massive data and solving large-
scale nonlinear problems (Goodfellow et al. 2016). With
their ability to capture complex nonlinear relationships
and temporal dependencies in data, these models are well-
suited for predicting hydrological variables (Shen 2018).
With the right database, advanced Al methods can be
employed to predict key meteorological variables.
Atmospheric factors, particularly temperature and
precipitation, play a significant role in predicting
streamflow, groundwater level, soil moisture, and soil
temperature (Beven 2011). The main goal of this
publication is to introduce new Al techniques that can
predict all environmental parameters of climate, soil, and
water.

What is machine learning (ML)?

Machine learning (ML), a subfield of artificial intelligence,
focuses on enabling computers to derive insights and make
predictions from data without explicit hard-coded
instructions. In hydrologic science, ML techniques are
harnessed to model and predict complex water-related
processes—such as streamflow, groundwater recharge,
soil moisture dynamics, and water quality—by uncovering
intricate patterns within large and often highly variable
datasets. Unlike traditional hydrologic modeling that relies



heavily on deterministic equations derived from physical
principles, ML approaches can integrate diverse data
sources (e.g., weather records, land-use information,
topographic metrics, remote sensing imagery, and
historical water resource measurements) to construct
flexible, data-driven models.

These models learn from historical observations, adapt to
changing conditions, and often improve in accuracy as
more data become available. This is particularly useful for
hydrologic forecasting in regions with limited
observational data or rapidly shifting climatic conditions.
By distilling complexity into relationships between inputs
(like precipitation, temperature, and watershed
characteristics) and outputs (such as streamflow or
groundwater levels), ML provides a complementary tool to
traditional methods, offering improved predictive
capabilities, enhanced understanding of system behavior,
and support for more informed decision-making in water
resource management.

Traditional hydrological models, which are based on
deterministic equations derived from physical principles,
often have limitations in representing the nonlinear and
highly variable behavior of environmental systems (Beven
2011; Clark et al. 2017). In contrast, data-driven models—
particularly those based on machine learning and deep
learning—can identify complex patterns in large and
heterogeneous datasets without relying on predefined
assumptions (Shen 2018; Reichstein et al. 2019). These
models are well-suited for integrating multiple data
sources, including remote sensing, meteorological
observations, and land-use data, and can adapt to non-
stationary conditions (Nearing et al. 2021). Consequently,
they frequently demonstrate improved predictive
performance over conventional methods, particularly in
regions with limited data availability or where
hydrological conditions are subject to rapid change
(Mosavi et al. 2018; Kratzert et al. 2019). These
capabilities make Al-based models a valuable addition to
existing hydrological forecasting frameworks.

What is deep learning (DL)?

Deep learning (DL), a specialized branch of machine
learning, utilizes multi-layered neural networks—
computational models inspired by the human brain that
consist of interconnected nodes (or "neurons") organized
in layers—to model and interpret complex, nonlinear
relationships within large hydrological datasets. In
hydrologic science, DL techniques are employed to
enhance the prediction and analysis of key water-related
processes such as streamflow, groundwater levels, soil
moisture, and water quality. By integrating diverse data
sources—including meteorological records, remote
sensing imagery, and land-use information—DL models
can automatically extract relevant features and uncover
intricate patterns that traditional methods may miss. This

capability allows for more accurate and timely forecasts,
improved understanding of hydrological dynamics, and
better-informed water resource management decisions.
Additionally, DL's ability to handle vast and varied datasets
makes it particularly valuable in regions with limited
observational data or rapidly changing environmental
conditions, thereby advancing the effectiveness and
resilience of water resource forecasting systems.

Case Study in Florida

Machine Learning in Forecasting Water Resources
With available data from a Florida hydrology database,
research has been initiated to apply advanced Al methods
for forecasting the most consequential hydrological fields
(i.e., groundwater level and surface water discharge).

Overview of DL Models Used in Forecasting Water
Resources in Florida

Several types of neural network models have been applied
to predict and analyze water time series data. General
recurrent neural networks (RNN), particularly well-suited
for processing sequential data such as time series, were
utilized to predict changes in water levels over time based
on past measurements. Feedforward neural networks
were employed to establish direct predictions from
meteorological inputs, useful in scenarios where historical
data patterns directly inform future conditions. Lastly,
transformer models, known for their ability to handle
complex relationships within data, were utilized to
enhance predictions by focusing on the intricate
dependencies and patterns in water level fluctuations.
Together, these models operated as robust tools to
accurately forecast water-related trends, which are crucial
for effective water resource management.

Forecasting River Discharge and Groundwater
Levels in Florida Using AI Methods

This study utilized daily records from the United States
Geological Survey covering 23 years (2001-2023) from 45
surface water discharge stations and 45 groundwater level
stations. Data preprocessing involved several essential
steps to ensure data quality and consistency. Missing
values were handled using linear interpolation, where the
missing data points were estimated based on the values of
the nearest known points, maintaining the continuity of
the dataset (Figure 1). Additionally, units were
standardized for consistency: groundwater levels were
converted from feet to meters, and surface water discharge
values were converted from cubic feet per second to cubic
meters per second. The dataset was then split
chronologically into training and testing sets using an
80:20 ratio, with 80% of the data allocated for model
training and 20% reserved for testing to evaluate model
performance. While prior knowledge of these steps is not
essential for understanding the results, readers interested
in more details can refer to standard resources on data
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preprocessing techniques in Al applications (Maharana et
al. 2022). Additionally, recent advancements in large
language models now offer accessible and user-friendly
tools, enabling even non-experts to handle many data
preprocessing tasks efficiently (Zhang et al. 2024).

This research evaluated various deep learning models for
predicting daily surface water discharge and groundwater
levels in Florida. The evaluated models include specific
architectures under the categories of recurrent neural
networks (RNNs), feedforward neural networks, and
transformer models. An LSTM, a specialized type of RNN,
was used for its effectiveness in capturing sequential
dependencies in hydrological time-series data. The LSTM
model was updated to include a layer size of 512 neurons
(or “units”), aligning its representational capacity with the
other models. For feedforward neural networks, NBEATS
and NHITS were employed, with NHITS demonstrating
strength in handling multiscale hierarchical patterns.
NHITS was further modified to have a hidden size of 512
neurons, ensuring a fair comparison with other models.
NBEATS retained its original architecture, featuring two
stacks of three fully connected layers with 512 neurons per
layer, optimized for trend and seasonal pattern
recognition. Among transformer-based models, Temporal
Fusion Transformer (TFT) and Informer were utilized for
their ability to process sequential data efficiently. TFT was
configured with a hidden size of 512 neurons and 8
attention heads, while retaining its original feedforward
dimension of 128, making it slightly less complex than
Informer. Informer featured an encoder-decoder structure
with 2 encoder layers, 512 neurons, 8 attention heads, and
2,048 feedforward dimensions, optimized for long-
sequence forecasting using sparse self-attention

Model Building

mechanisms. Regularization was applied consistently
across all models using dropout or weight decay to prevent
overfitting. Additionally, all models were trained for 100
epochs with early stopping, a batch size of 128, and
optimization using Adam or equivalent optimizers with
similar learning rates. These adjustments ensured that
each model operated with comparable resources, allowing
for a balanced evaluation of their performance on
hydrological forecasting tasks. Collectively, these models
operated as robust tools to accurately forecast water-
related trends, which are crucial for effective water
resource management.

The preliminary results demonstrate that DL models
consistently performed well across all stations, effectively
capturing the temporal dynamics of both surface water
and groundwater. Among the evaluated models, NHITS
emerged as the most robust, delivering superior accuracy
in the majority of the 45 groundwater and 45 surface
water stations analyzed, often outperforming other models
by significant margins. TFT ranked as the second-best
model, outperforming NHITS in 12 surface water stations
and 6 groundwater stations. To further demonstrate the
practical application of the models, NHITS, as the top-
performing model, was used to forecast surface water
discharge and groundwater levels for the next 3, 6, 9, and
12 months. The forecasting results highlight the capability
of NHITS and other models to accurately predict future
trends. These important trends include potential drops in
the groundwater levels of some areas that could affect
water availability for farming, as well as increases in river
discharge and the groundwater levels of other areas that
might lead to flooding (Figure 2).
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Figure 1. AI models to forecast surface water discharge and groundwater level in Florida.
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Figure 2. Groundwater level trends across Florida.

Conclusions

Increasing population and extreme weather events are
expected to make water resources forecasting more
important due to more frequent and intense droughts,
heatwaves, and large storms. This publication aims to
introduce the new advanced machine learning approaches
applied to water resources and to describe a case study of
applications in Florida. Several deep learning techniques
have been introduced for hydrological applications in
Florida. Among these, transformers represent a significant
advancement in Al, demonstrating their potential to
revolutionize hydrology modeling. This makes them a
game changer in predicting daily surface water discharge
and groundwater levels.

These comparisons highlight each model's varying
capabilities in handling Florida's complex hydrological
data, contributing valuable insights to the development of
accurate and reliable hydrological forecasting models,
which are crucial for sustainable water resource
management in the face of changing climate conditions.

With sufficient data and computational resources, Al-based
models can identify areas susceptible to flooding and
regions likely to experience water shortages. Despite their
strong predictive performance, Al models remain limited
in their ability to represent hydrologic processes,
management scenarios, and system dynamics. Therefore,
combining Al models with traditional physics-based
hydrologic models is recommended to improve forecasting
under future climate conditions. Large-scale
implementation will require continued advances in Earth-
observation datasets (e.g., upcoming satellite missions),
improved retrieval algorithms, integrated modeling
frameworks, and cloud-based processing environments
(Brocca et al. 2024). In the coming years, the
complementary use of Al and physics-based modeling is
expected to enhance hydrologic simulations and
forecasting, supporting informed decision-making at
regional and statewide scales.
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