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Introduction 
This publication will provide examples of how AI can 
potentially improve the forecasting of water resource 
variables at both the field and regional levels. It is 
primarily intended for Extension educators, environmental 
and water resources consultants, farmers, researchers, and 
students who want to know more about AI systems and 
their applications in agriculture and the environment. By 
exploiting the opportunities that AI brings, stakeholders 
will gain insights into the advantages of smart technologies 
for environmental monitoring (Campbell 2021). 

Accurate forecasting of surface water discharge and 
groundwater levels is essential for effective water resource 
management, especially in regions like Florida, where 
these resources are vital to the local ecosystem and 
economy. Florida's unique hydrological characteristics, 
including an extensive surface water network and the 
productive Floridan Aquifer, present a complex yet crucial 
area for hydrological studies. 

The advent of artificial intelligence (AI) and machine 
learning (ML), an emerging transformative technology, has 
permeated every aspect of our lives, from computer vision 
to healthcare and now the environment (Russell and 
Norvig 2016; Botache and Guzman 2024). As highlighted 
by McAfee and Brynjolfsson (2017) and Choi et al. (2023), 
these technologies are redefining how to approach 
problems, providing innovative, scalable, and efficient 
solutions to complex challenges in diverse fields. 

Nowadays, hydrological systems are becoming 
increasingly complex, a consequence of the growing 
interaction between nature and humans from the local 
scale of river sections, lakes, reservoirs, and so forth, to the 
global scale (Hannah et al. 2011). In addition, the climate 
drives the hydroclimatic characteristics of an area, 
affecting the availability of natural resources, soil health, 
the functioning and services of ecosystems, and human 
health (IPCC 2014). However, traditional approaches can 
hardly handle this nonlinear behavior; moreover, the 
analysis of hydrological systems at the large scale, even 

globally, requires dealing with large volumes of real-time 
data. There is great demand for the development of models 
to evaluate, predict, and optimize the performance of 
complex hydrological systems whose behavior is 
characterized by strong nonlinearity. AI could help to 
understand the complex relationships between the Earth’s 
climate, soil, and water processes. With its ability to learn 
from databases, make predictions, and automate decision-
making processes, AI presents a compelling solution to the 
multifaceted challenges of climate, soil, and water 
resources management (Schmidhuber 2015). Therefore, it 
is expected that AI could potentially improve the 
forecasting of environmental parameters at the field and 
regional levels, such as soil, water, and climate (Reichstein 
et al. 2019). 

In recent years, deep learning (DL) has shown great 
potential for processing massive data and solving large-
scale nonlinear problems (Goodfellow et al. 2016). With 
their ability to capture complex nonlinear relationships 
and temporal dependencies in data, these models are well-
suited for predicting hydrological variables (Shen 2018). 
With the right database, advanced AI methods can be 
employed to predict key meteorological variables. 
Atmospheric factors, particularly temperature and 
precipitation, play a significant role in predicting 
streamflow, groundwater level, soil moisture, and soil 
temperature (Beven 2011). The main goal of this 
publication is to introduce new AI techniques that can 
predict all environmental parameters of climate, soil, and 
water. 

What is machine learning (ML)? 
Machine learning (ML), a subfield of artificial intelligence, 
focuses on enabling computers to derive insights and make 
predictions from data without explicit hard-coded 
instructions. In hydrologic science, ML techniques are 
harnessed to model and predict complex water-related 
processes—such as streamflow, groundwater recharge, 
soil moisture dynamics, and water quality—by uncovering 
intricate patterns within large and often highly variable 
datasets. Unlike traditional hydrologic modeling that relies 
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heavily on deterministic equations derived from physical 
principles, ML approaches can integrate diverse data 
sources (e.g., weather records, land-use information, 
topographic metrics, remote sensing imagery, and 
historical water resource measurements) to construct 
flexible, data-driven models. 

These models learn from historical observations, adapt to 
changing conditions, and often improve in accuracy as 
more data become available. This is particularly useful for 
hydrologic forecasting in regions with limited 
observational data or rapidly shifting climatic conditions. 
By distilling complexity into relationships between inputs 
(like precipitation, temperature, and watershed 
characteristics) and outputs (such as streamflow or 
groundwater levels), ML provides a complementary tool to 
traditional methods, offering improved predictive 
capabilities, enhanced understanding of system behavior, 
and support for more informed decision-making in water 
resource management. 

Traditional hydrological models, which are based on 
deterministic equations derived from physical principles, 
often have limitations in representing the nonlinear and 
highly variable behavior of environmental systems (Beven 
2011; Clark et al. 2017). In contrast, data-driven models—
particularly those based on machine learning and deep 
learning—can identify complex patterns in large and 
heterogeneous datasets without relying on predefined 
assumptions (Shen 2018; Reichstein et al. 2019). These 
models are well-suited for integrating multiple data 
sources, including remote sensing, meteorological 
observations, and land-use data, and can adapt to non-
stationary conditions (Nearing et al. 2021). Consequently, 
they frequently demonstrate improved predictive 
performance over conventional methods, particularly in 
regions with limited data availability or where 
hydrological conditions are subject to rapid change 
(Mosavi et al. 2018; Kratzert et al. 2019). These 
capabilities make AI-based models a valuable addition to 
existing hydrological forecasting frameworks. 

What is deep learning (DL)? 
Deep learning (DL), a specialized branch of machine 
learning, utilizes multi-layered neural networks—
computational models inspired by the human brain that 
consist of interconnected nodes (or "neurons") organized 
in layers—to model and interpret complex, nonlinear 
relationships within large hydrological datasets. In 
hydrologic science, DL techniques are employed to 
enhance the prediction and analysis of key water-related 
processes such as streamflow, groundwater levels, soil 
moisture, and water quality. By integrating diverse data 
sources—including meteorological records, remote 
sensing imagery, and land-use information—DL models 
can automatically extract relevant features and uncover 
intricate patterns that traditional methods may miss. This 

capability allows for more accurate and timely forecasts, 
improved understanding of hydrological dynamics, and 
better-informed water resource management decisions. 
Additionally, DL's ability to handle vast and varied datasets 
makes it particularly valuable in regions with limited 
observational data or rapidly changing environmental 
conditions, thereby advancing the effectiveness and 
resilience of water resource forecasting systems. 

Case Study in Florida 
Machine Learning in Forecasting Water Resources 
With available data from a Florida hydrology database, 
research has been initiated to apply advanced AI methods 
for forecasting the most consequential hydrological fields 
(i.e., groundwater level and surface water discharge). 

Overview of DL Models Used in Forecasting Water 
Resources in Florida 
Several types of neural network models have been applied 
to predict and analyze water time series data. General 
recurrent neural networks (RNN), particularly well-suited 
for processing sequential data such as time series, were 
utilized to predict changes in water levels over time based 
on past measurements. Feedforward neural networks 
were employed to establish direct predictions from 
meteorological inputs, useful in scenarios where historical 
data patterns directly inform future conditions. Lastly, 
transformer models, known for their ability to handle 
complex relationships within data, were utilized to 
enhance predictions by focusing on the intricate 
dependencies and patterns in water level fluctuations. 
Together, these models operated as robust tools to 
accurately forecast water-related trends, which are crucial 
for effective water resource management. 

Forecasting River Discharge and Groundwater 
Levels in Florida Using AI Methods 
This study utilized daily records from the United States 
Geological Survey covering 23 years (2001–2023) from 45 
surface water discharge stations and 45 groundwater level 
stations. Data preprocessing involved several essential 
steps to ensure data quality and consistency. Missing 
values were handled using linear interpolation, where the 
missing data points were estimated based on the values of 
the nearest known points, maintaining the continuity of 
the dataset (Figure 1). Additionally, units were 
standardized for consistency: groundwater levels were 
converted from feet to meters, and surface water discharge 
values were converted from cubic feet per second to cubic 
meters per second. The dataset was then split 
chronologically into training and testing sets using an 
80:20 ratio, with 80% of the data allocated for model 
training and 20% reserved for testing to evaluate model 
performance. While prior knowledge of these steps is not 
essential for understanding the results, readers interested 
in more details can refer to standard resources on data 
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preprocessing techniques in AI applications (Maharana et 
al. 2022). Additionally, recent advancements in large 
language models now offer accessible and user-friendly 
tools, enabling even non-experts to handle many data 
preprocessing tasks efficiently (Zhang et al. 2024). 

This research evaluated various deep learning models for 
predicting daily surface water discharge and groundwater 
levels in Florida. The evaluated models include specific 
architectures under the categories of recurrent neural 
networks (RNNs), feedforward neural networks, and 
transformer models. An LSTM, a specialized type of RNN, 
was used for its effectiveness in capturing sequential 
dependencies in hydrological time-series data. The LSTM 
model was updated to include a layer size of 512 neurons 
(or “units”), aligning its representational capacity with the 
other models. For feedforward neural networks, NBEATS 
and NHITS were employed, with NHITS demonstrating 
strength in handling multiscale hierarchical patterns. 
NHITS was further modified to have a hidden size of 512 
neurons, ensuring a fair comparison with other models. 
NBEATS retained its original architecture, featuring two 
stacks of three fully connected layers with 512 neurons per 
layer, optimized for trend and seasonal pattern 
recognition. Among transformer-based models, Temporal 
Fusion Transformer (TFT) and Informer were utilized for 
their ability to process sequential data efficiently. TFT was 
configured with a hidden size of 512 neurons and 8 
attention heads, while retaining its original feedforward 
dimension of 128, making it slightly less complex than 
Informer. Informer featured an encoder-decoder structure 
with 2 encoder layers, 512 neurons, 8 attention heads, and 
2,048 feedforward dimensions, optimized for long-
sequence forecasting using sparse self-attention 

mechanisms. Regularization was applied consistently 
across all models using dropout or weight decay to prevent 
overfitting. Additionally, all models were trained for 100 
epochs with early stopping, a batch size of 128, and 
optimization using Adam or equivalent optimizers with 
similar learning rates. These adjustments ensured that 
each model operated with comparable resources, allowing 
for a balanced evaluation of their performance on 
hydrological forecasting tasks. Collectively, these models 
operated as robust tools to accurately forecast water-
related trends, which are crucial for effective water 
resource management. 

The preliminary results demonstrate that DL models 
consistently performed well across all stations, effectively 
capturing the temporal dynamics of both surface water 
and groundwater. Among the evaluated models, NHITS 
emerged as the most robust, delivering superior accuracy 
in the majority of the 45 groundwater and 45 surface 
water stations analyzed, often outperforming other models 
by significant margins. TFT ranked as the second-best 
model, outperforming NHITS in 12 surface water stations 
and 6 groundwater stations. To further demonstrate the 
practical application of the models, NHITS, as the top-
performing model, was used to forecast surface water 
discharge and groundwater levels for the next 3, 6, 9, and 
12 months. The forecasting results highlight the capability 
of NHITS and other models to accurately predict future 
trends. These important trends include potential drops in 
the groundwater levels of some areas that could affect 
water availability for farming, as well as increases in river 
discharge and the groundwater levels of other areas that 
might lead to flooding (Figure 2). 

 
Figure 1.  AI models to forecast surface water discharge and groundwater level in Florida. 
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Figure 2. Groundwater level trends across Florida. 

Conclusions 
Increasing population and extreme weather events are 
expected to make water resources forecasting more 
important due to more frequent and intense droughts, 
heatwaves, and large storms. This publication aims to 
introduce the new advanced machine learning approaches 
applied to water resources and to describe a case study of 
applications in Florida. Several deep learning techniques 
have been introduced for hydrological applications in 
Florida. Among these, transformers represent a significant 
advancement in AI, demonstrating their potential to 
revolutionize hydrology modeling. This makes them a 
game changer in predicting daily surface water discharge 
and groundwater levels. 

These comparisons highlight each model's varying 
capabilities in handling Florida's complex hydrological 
data, contributing valuable insights to the development of 
accurate and reliable hydrological forecasting models, 
which are crucial for sustainable water resource 
management in the face of changing climate conditions. 

With sufficient data and computational resources, AI-based 
models can identify areas susceptible to flooding and 
regions likely to experience water shortages. Despite their 
strong predictive performance, AI models remain limited 
in their ability to represent hydrologic processes, 
management scenarios, and system dynamics. Therefore, 
combining AI models with traditional physics-based 
hydrologic models is recommended to improve forecasting 
under future climate conditions. Large-scale 
implementation will require continued advances in Earth-
observation datasets (e.g., upcoming satellite missions), 
improved retrieval algorithms, integrated modeling 
frameworks, and cloud-based processing environments 
(Brocca et al. 2024). In the coming years, the 
complementary use of AI and physics-based modeling is 
expected to enhance hydrologic simulations and 
forecasting, supporting informed decision-making at 
regional and statewide scales. 
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